Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 1407.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Ideal structure of the Kauffman and related monoids</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Lau, Kwok Wai" name="eprints.creators_name" />
  14. <meta content="FitzGerald, D.G." name="eprints.creators_name" />
  15. <meta content="rex.lau@bio.usyd.edu.au" name="eprints.creators_id" />
  16. <meta content="D.FitzGerald@utas.edu.au" name="eprints.creators_id" />
  17. <meta content="article" name="eprints.type" />
  18. <meta content="2007-07-19" name="eprints.datestamp" />
  19. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  20. <meta content="show" name="eprints.metadata_visibility" />
  21. <meta content="Ideal structure of the Kauffman and related monoids" name="eprints.title" />
  22. <meta content="pub" name="eprints.ispublished" />
  23. <meta content="230105" name="eprints.subjects" />
  24. <meta content="public" name="eprints.full_text_status" />
  25. <meta content="Ideal structure; Kauffman monoid." name="eprints.keywords" />
  26. <meta content="The definitive version at Taylor and Francis Publishing" name="eprints.note" />
  27. <meta content="The generators of the Temperley-Lieb algebra generate a monoid with an appealing geometric representation. It has been much studied, notably by Louis Kauffman. Borisavljevic, Dosen, and Petric gave a complete proof of its abstract presentation by generators and relations, and suggested the name 'Kauffman monoid'. We bring the theory of semigroups to the study of a certain finite homomorphic image of the Kauffman monoid. We show the homomorphic image (the Jones monoid) to be a combinatorial and regular *-semigroup with linearly ordered ideals. The Kauffman monoid is explicitly described in terms of the Jones monoid and a purely combinatorial numerical function. We use this to describe the ideal structure of the Kauffman monoid
  28. and two other of its homomorphic images." name="eprints.abstract" />
  29. <meta content="2006" name="eprints.date" />
  30. <meta content="published" name="eprints.date_type" />
  31. <meta content="Communications in Algebra" name="eprints.publication" />
  32. <meta content="34" name="eprints.volume" />
  33. <meta content="2617-2629" name="eprints.pagerange" />
  34. <meta content="10.1080/00927870600651414" name="eprints.id_number" />
  35. <meta content="UNSPECIFIED" name="eprints.thesis_type" />
  36. <meta content="TRUE" name="eprints.refereed" />
  37. <meta content="0092-7872" name="eprints.issn" />
  38. <meta content="http://dx.doi.org/10.1080/00927870600651414" name="eprints.official_url" />
  39. <meta content="Borisavljevic, M.; Dosen, K.; Petric, Z. Kauffman monoids. J. Knot Theory Ramifications 2002, 11, 127--143.
  40. Dosen, K.; Petric, Z. Self-adjunctions and matrices. J. Pure Appl. Algebra 2003, 184, 7--39.
  41. Howie, J. M. Fundamentals of semigroup theory; Oxford University Press: Oxford, 1995.
  42. Jones., V. F. R. Index for subfactors. Invent. Math. 1983, 72, 1--25.
  43. Kauffman, L. H. An invariant of regular isotopy. Trans. Amer. Math. Soc. 1990, 318, 417--471.
  44. Nordahl, T. E.; Scheiblich, H. E. Regular *-semigroups. Semigroup Forum 1978, 16, 369--377.
  45. Temperley, H. N. V.; Lieb, E. H. Relations between the `percolation' and `colouring' problem and other graph-theoretic problems associated with regular planar lattices: some exact results for the `percolation' problem. Proc. Roy. Soc. Lond. A 1971, 322, 251--280." name="eprints.referencetext" />
  46. <meta content="Lau, Kwok Wai and FitzGerald, D.G. (2006) Ideal structure of the Kauffman and related monoids. Communications in Algebra, 34 . pp. 2617-2629. ISSN 0092-7872" name="eprints.citation" />
  47. <meta content="http://eprints.utas.edu.au/1407/1/IDEAL_Jones.pdf" name="eprints.document_url" />
  48. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  49. <meta content="Ideal structure of the Kauffman and related monoids" name="DC.title" />
  50. <meta content="Lau, Kwok Wai" name="DC.creator" />
  51. <meta content="FitzGerald, D.G." name="DC.creator" />
  52. <meta content="230105 Group Theory And Generalisations (Incl. Topological Groups And Lie Groups)" name="DC.subject" />
  53. <meta content="The generators of the Temperley-Lieb algebra generate a monoid with an appealing geometric representation. It has been much studied, notably by Louis Kauffman. Borisavljevic, Dosen, and Petric gave a complete proof of its abstract presentation by generators and relations, and suggested the name 'Kauffman monoid'. We bring the theory of semigroups to the study of a certain finite homomorphic image of the Kauffman monoid. We show the homomorphic image (the Jones monoid) to be a combinatorial and regular *-semigroup with linearly ordered ideals. The Kauffman monoid is explicitly described in terms of the Jones monoid and a purely combinatorial numerical function. We use this to describe the ideal structure of the Kauffman monoid
  54. and two other of its homomorphic images." name="DC.description" />
  55. <meta content="2006" name="DC.date" />
  56. <meta content="Article" name="DC.type" />
  57. <meta content="PeerReviewed" name="DC.type" />
  58. <meta content="application/pdf" name="DC.format" />
  59. <meta content="http://eprints.utas.edu.au/1407/1/IDEAL_Jones.pdf" name="DC.identifier" />
  60. <meta content="http://dx.doi.org/10.1080/00927870600651414" name="DC.relation" />
  61. <meta content="Lau, Kwok Wai and FitzGerald, D.G. (2006) Ideal structure of the Kauffman and related monoids. Communications in Algebra, 34 . pp. 2617-2629. ISSN 0092-7872" name="DC.identifier" />
  62. <meta content="http://eprints.utas.edu.au/1407/" name="DC.relation" />
  63. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/BibTeX/epprod-eprint-1407.bib" title="BibTeX" type="text/plain" />
  64. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/ContextObject/epprod-eprint-1407.xml" title="OpenURL ContextObject" type="text/xml" />
  65. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/ContextObject::Dissertation/epprod-eprint-1407.xml" title="OpenURL Dissertation" type="text/xml" />
  66. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/ContextObject::Journal/epprod-eprint-1407.xml" title="OpenURL Journal" type="text/xml" />
  67. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/DC/epprod-eprint-1407.txt" title="Dublin Core" type="text/plain" />
  68. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/DIDL/epprod-eprint-1407.xml" title="DIDL" type="text/xml" />
  69. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/EndNote/epprod-eprint-1407.enw" title="EndNote" type="text/plain" />
  70. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/HTML/epprod-eprint-1407.html" title="HTML Citation" type="text/html; charset=utf-8" />
  71. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/METS/epprod-eprint-1407.xml" title="METS" type="text/xml" />
  72. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/MODS/epprod-eprint-1407.xml" title="MODS" type="text/xml" />
  73. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/RIS/epprod-eprint-1407.ris" title="Reference Manager" type="text/plain" />
  74. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/Refer/epprod-eprint-1407.refer" title="Refer" type="text/plain" />
  75. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/Simple/epprod-eprint-1407text" title="Simple Metadata" type="text/plain" />
  76. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/Text/epprod-eprint-1407.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  77. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/1407/XML/epprod-eprint-1407.xml" title="EP3 XML" type="text/xml" />
  78.  
  79. </head>
  80. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  81. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  82.  
  83.  
  84.  
  85.  
  86. <table width="795" border="0" cellspacing="0" cellpadding="0">
  87. <tr>
  88. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  89. <table border="0" cellpadding="0" cellspacing="0" width="795">
  90. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  91. <tr>
  92. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  93. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  94. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  95. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  96. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  97. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  98. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  99. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  100. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  101. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  102. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  103. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  104. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  105. </tr>
  106. <tr>
  107. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  108. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  109. </tr>
  110. <tr>
  111. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  112. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  113. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  114. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  115. </tr>
  116. <tr>
  117. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  118. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  119. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  120. </tr>
  121. <tr>
  122. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  123. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  124. </tr>
  125. <tr>
  126. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  127. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  128. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  129. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  130. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  131. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  132. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  133. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  134. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  135. </tr>
  136. <tr>
  137. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  138. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  139. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  140. </tr>
  141. <tr>
  142. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  143. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  144. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  145. </tr>
  146. </table></td>
  147. </tr>
  148. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  149. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  150. <td align="right" style="white-space: nowrap">
  151. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  152. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  153. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  154. <input type="hidden" name="_order" value="bytitle" />
  155. <input type="hidden" name="basic_srchtype" value="ALL" />
  156. <input type="hidden" name="_satisfyall" value="ALL" />
  157. </form>
  158. </td>
  159. </tr></table></td></tr>
  160. <tr>
  161. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  162.  
  163.  
  164. <div align="center">
  165. <table width="720" class="ep_tm_main"><tr><td align="left">
  166. <h1 class="ep_tm_pagetitle">Ideal structure of the Kauffman and related monoids</h1>
  167. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Lau, Kwok Wai</span> and <span class="person_name">FitzGerald, D.G.</span> (2006) <xhtml:em>Ideal structure of the Kauffman and related monoids.</xhtml:em> Communications in Algebra, 34 . pp. 2617-2629. ISSN 0092-7872</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a onmouseover="EPJS_ShowPreview( event, 'doc_preview_1810' );" href="http://eprints.utas.edu.au/1407/1/IDEAL_Jones.pdf" onmouseout="EPJS_HidePreview( event, 'doc_preview_1810' );"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a><div class="ep_preview" id="doc_preview_1810"><table><tr><td><img alt="" src="http://eprints.utas.edu.au/1407/thumbnails/1/preview.png" class="ep_preview_image" border="0" /><div class="ep_preview_title">Preview</div></td></tr></table></div></td><td valign="top"><a href="http://eprints.utas.edu.au/1407/1/IDEAL_Jones.pdf"><span class="ep_document_citation">PDF (Author Version)</span></a> - Requires a PDF viewer<br />172Kb</td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://dx.doi.org/10.1080/00927870600651414">http://dx.doi.org/10.1080/00927870600651414</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">The generators of the Temperley-Lieb algebra generate a monoid with an appealing geometric representation. It has been much studied, notably by Louis Kauffman. Borisavljevic, Dosen, and Petric gave a complete proof of its abstract presentation by generators and relations, and suggested the name 'Kauffman monoid'. We bring the theory of semigroups to the study of a certain finite homomorphic image of the Kauffman monoid. We show the homomorphic image (the Jones monoid) to be a combinatorial and regular *-semigroup with linearly ordered ideals. The Kauffman monoid is explicitly described in terms of the Jones monoid and a purely combinatorial numerical function. We use this to describe the ideal structure of the Kauffman monoid&#13;
  168. and two other of its homomorphic images.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Additional Information:</th><td valign="top" class="ep_row">The definitive version at Taylor and Francis Publishing</td></tr><tr><th valign="top" class="ep_row">Keywords:</th><td valign="top" class="ep_row">Ideal structure; Kauffman monoid.</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/230105.html">230000 Mathematical Sciences &gt; 230100 Mathematics &gt; 230105 Group Theory And Generalisations (Incl. Topological Groups And Lie Groups)</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">1407</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Dr D. G. FitzGerald</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">19 Jul 2007</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=1407;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=1407">item control page</a></p>
  169. </td></tr></table>
  170. </div>
  171.  
  172.  
  173.  
  174. <!-- InstanceEndEditable --></td>
  175. </tr>
  176. <tr>
  177. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  178. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  179. <tr valign="top">
  180. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  181. </tr>
  182. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  183. <tr valign="top">
  184. <td width="68%" class="footer">Authorised by the University Librarian<br />
  185. © University of Tasmania ABN 30 764 374 782<br />
  186. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  187. <td width="32%"><div align="right">
  188. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  189. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  190. </a></p>
  191. </div></td>
  192. </tr>
  193. <tr valign="top">
  194. <td><p>  </p></td>
  195. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  196. </tr>
  197. </table>
  198. <!-- #EndLibraryItem -->
  199. <div align="center"></div></td>
  200. </tr>
  201. </table>
  202.  
  203. </body>
  204. </html>